77 research outputs found

    Mobile Power Network for Ultimate Mobility without Battery Life Anxiety

    Full text link
    Similar to the evolution from the wired Internet to mobile Internet (MI), the growing demand for power delivery anywhere and anytime appeals for power grid transformation from wired to mobile domain. We propose here the next generation of power delivery network -- mobile power network (MPN) for wireless power transfer within a mobile range from several meters to tens of meters. At first, we present the MPN's concept evolution and application scenarios. Then, we introduce the MPN's supporting technology, namely resonant beam charging (RBC). As a long-range wireless power transfer (WPT) method, RBC can safely deliver multi-Watt power to multiple devices concurrently. Meanwhile, the recent progress in RBC research has been summarized. Next, we specify the MPN's architecture to provide the wide-area WPT coverage. Finally, we discuss the MPN's features and challenges. MPN can enable the ultimate mobility by cutting the final cord of mobile devices, realizing the "last-mile" mobile power delivery.Comment: 10 pages, 5 figure

    E3 ligase ligand optimization of Clinical PROTACs

    Get PDF
    Proteolysis targeting chimeras (PROTACs) technology can realize the development of drugs for non-druggable targets that are difficult to achieve with traditional small molecules, and therefore has attracted extensive attention from both academia and industry. Up to now, there are more than 600 known E3 ubiquitin ligases with different structures and functions, but only a few have developed corresponding E3 ubiquitin ligase ligands, and the ligands used to design PROTAC molecules are limited to a few types such as VHL (Von-Hippel-Lindau), CRBN (Cereblon), MDM2 (Mouse Doubleminute 2 homolog), IAP (Inhibitor of apoptosis proteins), etc. Most of the PROTAC molecules that have entered clinical trials were developed based on CRBN ligands, and only DT2216 was based on VHL ligand. Obviously, the structural optimization of E3 ubiquitin ligase ligands plays an instrumental role in PROTAC technology from bench to bedside. In this review, we review the structure optimization process of E3 ubiquitin ligase ligands currently entering clinical trials on PROTAC molecules, summarize some characteristics of these ligands in terms of druggability, and provide some preliminary insights into their structural optimization. We hope that this review will help medicinal chemists to develop more druggable molecules into clinical studies and to realize the greater therapeutic potential of PROTAC technology

    An Improved TESLA Protocol Based on Queuing Theory and Benaloh-Leichter SSS in WSNs

    Get PDF
    Broadcast authentication is a fundamental security technology in wireless sensor networks (ab. WSNs). As an authentication protocol, the most widely used in WSN, TESLA protocol, its publication of key is based on a fixed time interval, which may lead to unsatisfactory performance under the unstable network traffic environment. Furthermore, the frequent network communication will cause the delay authentication for some broadcast packets while the infrequent one will increase the overhead of key computation. To solve these problems, this paper improves the traditional TESLA by determining the publication of broadcast key based on the network data flow rather than the fixed time interval. Meanwhile, aiming at the finite length of hash chain and the problem of exhaustion, a self-renewal hash chain based on Benaloh-Leichter secret sharing scheme (SRHC-BL SSS) is designed, which can prolong the lifetime of network. Moreover, by introducing the queue theory model, we demonstrate that our scheme has much lower key consumption than TESLA through simulation evaluations. Finally, we analyze and prove the security and efficiency of the proposed self-renewal hash chain, comparing with other typical schemes
    • …
    corecore